Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1337129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650924

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Macrófagos , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Microambiente Tumoral/inmunología , Neoplasias de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/inmunología , Macrófagos/inmunología , Animales , Inmunoterapia/métodos , Plasticidad de la Célula/inmunología
2.
Enzyme Microb Technol ; 162: 110151, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36347159

RESUMEN

ß-1,3-1,4-Glucanase is an indispensable biocatalyst in barley brewing industry for its crucial effect in reducing the viscosity of mash. However, the unsatisfactory thermostability greatly limited its application performance. In this study, structure-based surface charge engineering was conducted aiming at thermostability improvement of BisGlu16B, a highly active ß-1,3-1,4-glucanase from Bispora sp. MEY-1. By applying the enzyme thermal stability system (ETSS), residues D47, D213, and D253 were inferred to be critical sites for thermal properties. Single (D47A, D213A, and D253A) and combination (D47A/D213A/D253A) mutants were generated and compared with BisGlu16B. Among all improved mutants, D47A/D213A/D253A outstanded in thermostability. In comparison with BisGlu16B, its T50 and Tm were respectively increased by 7.0 °C and 4.3 °C, while the t1/2 at 70 °C was 8.1 times that of the wild type. Furthermore, the catalytic activity of D47A/D213A/D253A also increased by 42.5%, compared with BisGlu16B (42,900 ± 300 U/mg vs. 30,100 ± 800 U/mg). Comparing with BisGlu16B and commercial enzyme treatment groups, under simulated malting conditions, efficiency improvement was observed in decreasement of viscosity (35.5% and 90.7%) and filtration time (30.9% and 34.6%) for D47A/D213A/D253A treatment group. Molecular dynamics simulation showed that mutation sites A47, A213, and A253 increased the protein rigidity by lowering the overall root mean square deviation (RMSD). This study may bring optimization of technology and improvement of producing efficiency to the present brewing industry.


Asunto(s)
Ascomicetos , Hordeum , Hordeum/genética , Hordeum/metabolismo , Glicósido Hidrolasas/metabolismo , Estabilidad de Enzimas , Catálisis , Ascomicetos/metabolismo , Temperatura
3.
Environ Sci Pollut Res Int ; 30(4): 8707-8721, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35366731

RESUMEN

N-glycosylation alters the properties of different enzymes in different ways. Rhizopus homothallicus was first described as an environmental isolate from desert soil in Guatemala. A new gene encoding glucanase RhGlu16B was identified in R. homothallicus. It had high specific activity (9673 U/mg) when barley glucan was used as a substrate, and ß-glucan is hemicellulose that is abundant in nature. RhGlu16B has only one N-glycosylation site in its Ala55-Gly64 loop. It was found that N-glycosylation increased its Tm value and catalytic efficiency by 5.1 °C and 59%, respectively. Adding N-glycosylation to the same region of GH16 family glucanases TlGlu16A (from Talaromyces leycettanus) increased its thermostability and catalytic efficiency by 6.4 °C and 38%, respectively. In a verification experiment using GH16 family glucanases BisGlu16B (from Bisporus) in which N-glycosylation was removed, N-glycosylation also appeared to promote thermostability and catalytic efficiency. N-glycosylation reduced the overall root mean square deviation of the enzyme structure, creating rigidity and increasing overall thermostability. This study provided a reference for the molecular modification of GH16 family glucanases and guided the utilization of ß-glucan in hemicellulose.


Asunto(s)
Polisacáridos , beta-Glucanos , beta-Glucanos/metabolismo , Glicosilación , Glicósido Hidrolasas/metabolismo
4.
Biotechnol Biofuels ; 14(1): 195, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598723

RESUMEN

BACKGROUND: Xylanase, an important accessory enzyme that acts in synergy with cellulase, is widely used to degrade lignocellulosic biomass. Thermostable enzymes with good catalytic activity at lower temperatures have great potential for future applications in the feed and fuel industries, which have distinct demands; however, the potential of the enzymes is yet to be researched. RESULTS: In this study, a structure-based semi-rational design strategy was applied to enhance the low-temperature catalytic performance of Bispora sp. MEY-1 XYL10C_∆N wild-type (WT). Screening and comparisons were performed for the WT and mutant strains. Compared to the WT, the mutant M53S/F54L/N207G exhibited higher specific activity (2.9-fold; 2090 vs. 710 U/mg) and catalytic efficiency (2.8-fold; 1530 vs. 550 mL/s mg) at 40 °C, and also showed higher thermostability (the melting temperature and temperature of 50% activity loss after 30 min treatment increased by 7.7 °C and 3.5 °C, respectively). Compared with the cellulase-only treatment, combined treatment with M53S/F54L/N207G and cellulase increased the reducing sugar contents from corn stalk, wheat bran, and corn cob by 1.6-, 1.2-, and 1.4-folds, with 1.9, 1.2, and 1.6 as the highest degrees of synergy, respectively. CONCLUSIONS: This study provides useful insights into the underlying mechanism and methods of xylanase modification for industrial utilization. We identified loop2 as a key functional area affecting the low-temperature catalytic efficiency of GH10 xylanase. The thermostable mutant M53S/F54L/N207G was selected for the highest low-temperature catalytic efficiency and reducing sugar yield in synergy with cellulase in the degradation of different types of lignocellulosic biomass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...